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A vacuum fluctuation
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Quantum Theory Theory of Relativity

Quantum Field Theory
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cosmological puzzle

Vacuum fluctuations

SIM
POSIO

 LA
TORRE



Casimir effect
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Mathematics. - On the attraction between two perfectly conducting 
plates. By H . B. G. CASIMIR. 

(Communicated at the meeting of May 29. 1948.) 

In a recent paper by POLDER and CASIMIR 1) it is shown that the inter-
action between a perfectly conducting plate and an atom or molecule with 
a static polarizibility a is in the limit of large distances R given by 

3 a JE=- -- hc -8n R4 

and that the interaction between two particles with statie polarizibilities 
al and a2 is given in that limit by 

dE=- 23 ���������
'in 

These formulae are obtained by taking the usual VAN DER W AALS-
LONDON forces as a starting point and correcting for retardation effects. 

In a communication to the "Colloque sur la théorie de la liaison chimi-
que" (Paris. 12-17 April. 1948) the present au thor was able to show 
that these expressions mayalso be derived through studying by means of 
classical electrodynamics the change of electromagnetic zero point energy. 
In this note we shall apply the same method to the interaction between 
two perfectly conducting plates. 

Let us consider a cu bic cavity of volume L3 bounded by perfectly con-
ducting walls and let a perfectly conducting square plate with side L be 
placed in this cavity parallel to the xy face and let us compare the 
situation in whieh this plate is at a small distance a from the xy face and the 
situation in which it is at a very large distance. say L/ 2. In both cases the 
expressions t ��hw where the summation extends over all possible 
resonance frequencies of the cavities are divergent and devoid of physical 
meaning but the difference between these sums in the two situations. 
t (.Eh w)I- ��� (.Eh w)J1, will be shown to have a weIl defined value and this 
value will be interpreted as the interaction between the plate and the 
xy face. 

The possible vibrations of a cavity defined by 

���� ��� � � � � ��� � � � � ��

have wave numbers 
n 

kx = L nx, 
n 

ky = T ny, 

where n x. ny, n: are positive integers; 

n 
kz= - nz, a 

k /k2 k2 2 1/ 2 2 = �� x + y + kz = V x + kz . 

1) H . B. G. CASIMlIR and D. POLDER. Phys. Rev., 73, 360 (1948) . 
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The higher derivatives will contain powers of (:r /akm) . Thus we find 
;n2 I 

<l EI U = - h c 24 X-SO . a3' 

a formula which holds as long as ale lil » 1. For the force per cm:! we find 

;n2 I I 
F = he 240 a 1 = 0.013 a;L dyne/cm 2 

where alt is the distance measured in microns . 
We are thus led to the following conclusions. There exists an attractive 

force between two metal plates which is independent of the material of 
the plates as long as the distance is so large that for wave . lengths 
comparable with that dis tance the penetration depth is small compared with 
the distance. This force may be interpreted as a zero point pressure of 
electromagnetic waves. 

Although the effect is smalI, an experimental confirmation seems not 
unfeasable and might be of a certain interest. 

Natuurkundig Laboratorium der N.V. Philips' 
Gloeilampenfabrieken. Eindhoven .) 
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! The formula only depends on h, c and a
! The minus sign means that F it is attractive

       ! The force is the dominant  force between  
          neutral objects a submicron distances

       !  At a=10nm the Casimir force equals the 
          atmospheric pressure
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Origin of Casimir force
! Modification of  vacuum (zero-point) energy  
   due to the presence of the plates
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q
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Casimir effect plane-sphere

�E = �~ cR �2

360 a2

R

a c
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Casimir effect experiments 

13 Institute of Physics !DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Table 1. Status of the experimental studies of Casimir forces between metallic
surfaces. For each experiment, listed in chronological order, the investigated
geometry, the explored range of distances, the claimed accuracy, and the first
author and reference are reported. The claimed accuracy is the one quoted by
each group, however it often corresponds to different definitions with different
statistical meanings. In the experiment by Sparnaay repulsive forces were
observed between aluminum surfaces, while the quoted accuracies for the van
Blokland and the Lamoreaux experiments have to be considered as reliable only
at the smallest distances. Whenever there was a sequel of experiments by the same
group, the quoted reference is for the first reported data set.

Year Geometry Range (µm) Accuracy (%) Reference

1958 Plane–plane 0.3 ÷ 2.5 100 Sparnaay [64]
1978 Plane–sphere 0.13 ÷ 0.67 25 van Blokland and Oveerbeek [65]
1997 Plane–sphere 0.6 ÷ 12.3 5 Lamoreaux [82]
1998 Plane–sphere 0.1 ÷ 0.9 1 Mohideen and Roy [89]
2000 Crossed cylinders 0.02 ÷ 0.1 1 Ederth [92]
2001 Plane–sphere 0.08 ÷ 1.0 1 Chan et al [93]
2002 Plane–plane 0.5 ÷ 3.0 15 Bressi et al [102]
2003 Plane–sphere 0.2 ÷ 2.0 1 Decca et al [110]

well focused effort to constrain non-Newtonian forces using a variety of schemes, with particular
regard to the cancellation of the Casimir force using the so-called isoelectronic technique [112].
In this approach, the differential force between a gold-coated sphere and flat surfaces of gold and
germanium coated with a shared layer of gold was measured, leading to a fractional difference in
the Casimir force estimated to be ≃10−6, below the experimental sensitivity [113]. The presence
of a force signal should be due to a non-Casimir like interaction. A nonzero force was evidenced,
but it was attributed to the residual Casimir force due to the different height difference between the
two flat surfaces, not controllable to better than ≃0.1 nm. The experiment is planned to run using
different isotopes of nickel to further reduce the fractional difference in the electronic properties.
The more recent results have been questioned with regard to the claimed precision [114] in some
of the parameters involved in the data analysis [115]. This issue seems still controversial and in
the next section we will discuss some tests which could be possible smoking guns in assessing
the sensitivity and the precision of all the Casimir force apparatuses.

We show in figure 2 pictures from the six recent experiments on Casimir forces, while in
table 1 the current knowledge of Casimir forces between metallic surfaces is summarized. In
figure 3 the corresponding reported limits in the α–λ plane are presented.

This succinct overview of the recent experiments on the Casimir forces needs to be
complemented by the parallel developments in the measurement of the Casimir–Polder force,
the long distance forces acting between atoms and macroscopic surfaces [76]. Casimir–Polder
forces establish the link between the macroscopic Casimir forces and the microscopic atom-
atom interactions (like the van der Waals forces). This force has been measured by looking at the
deflection induced on an atomic beam of sodium atoms by the presence of a metallic surface [77].
The accuracy of this measurement was around 12% limited by the control of the distance between
the atomic beam and the surface, but it was enough to confirm that the Casimir–Polder force, and

New Journal of Physics 8 (2006) 237 (http://www.njp.org/)

1958
1978

1997
1998

2000
2001
2002
2003

   2018    Sphere-sphere          0.02 -  0.4            1                     Munday et al. 2018
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Gravity at short distances
V (r) = �G

m1 m2

r
(1 + �e�r/�)
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 Experimental bounds 
2 orders of magnitude improvement (2014)
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The weight of quantum vacuum

�Ec

A
= � ~ c⇡2

720 a3
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g00 = 1� g z, gij = ��ij

Equivalence principle
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4Mojtaba Alipour , Fall 2014   

The calculation of the lamb shift is
rather intricate, because we are
dealing with the hydrogen atom as a
bound-state problem .

We must sum over all radiative
corrections to the electron interacting
with coulomb potential that modify
the naïve  𝑢𝛾0𝑢𝐴0 vertex.

These corrections :
1) Vertex correction
2) The anomalous magnetic moment
3) The self energy of the electron
4) The vacuum polarization graph
5) Even infrared divergence

Lamb shift
1947

1057.864±0.014 MHz1057.862 ± 0.020 MHz .

Experiment Theory

Weight of fluctuations.  Equivalence principle
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Vacuum Energy vs Dark Energy
! Cosmological constant  (w=-1)

! Cosmological constant is much smaller than 
any QFT vacuum energy

S =
1

16�G

Z
d4x

p
�g(R� 2�0)

E0

V
=

1

8�G
�0 = �P0

V

E0

V

obs

⇠ (10�12 GeV)4

E0

V

(EW)

⇠ (100GeV)4
E0

V

(PL)

⇠ (1018 GeV)4
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Vacuum Energy vs Dark Energy

E0
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=
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3

! Minkowski spacetime

! Cosmological background FLRW
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Casimir Energy vs Dark Energy
! Casimir Energy density

! Casimir Pressure 

Pc = � ~ c⇡2

240 a4

Ec =
Ec

A
= � ~ c⇡2

720 a3

! Amazing equation of state

Ec =
1

3
Pc
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The weight of quantum vacuum

hTµ⌫i = � ~ c⇡2

720 a4

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �3

1

CCA

hTµ⌫i 6= �~ c⇡2

�a4

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA

Conformal Invariance
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Non Abelian gauge theories

Perturbation theory

Ec

A
= � ~ c⇡2

720 a2
(N2 � 1)

Ec

A
= �~ c ⇣(3)

8⇡ a2
(N2 � 1)

D = 3 + 1

D = 2 + 1

There is life beyond QED
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Non Abelian gauge theories
Non-perturbative

Ĥ =

Z
d
3
x

h
� g2

2
�2

�A2 + 1
2g2FijF

ij
i

rA · �

�A
 (A) = 0  (A�) =  (A)

Gauss law

In 2+1D: holomophic parametrization

Az = @zMM�1
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Non Abelian gauge theories
Gauge transformations

Gauge invariant observables

A� = ��1A�+ ��1d� M� = �M

H = M
†
M = e

⌧a'a

[Karabali-Nair]

Ĥ =
1

2

Z
d
3
x

h
� �2

��2 + �(��+m
2)�

i
+ · · ·

�a = g
p
� 'a m = g2

2⇡ cA �R =
m2⇡ cR
2 cA
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Casimir Energy

Dirichlet/Neumann  boundary conditions

[M. A. -C. Iuliano]

Periodic boundary conditions

E(a) = � 1

8⇡a2
(2ma+ 1) e�2ma

E(a) = � 1

⇡a2
(2ma+ 1) e�ma

In agreement with lattice results
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Casimir Energy
Zaremba boundary conditions

[M. A. -C. Iuliano]

Generic boundary conditions
✓
�(0) + i�̇(0)
�(a) + i�̇(a)

◆
= U

✓
�(0)� i�̇(0)
�(a)� i�̇(a)

◆

E(a) = � ~ c
8⇡a2

(2ma+ 1) e�2ma

E(a) = � ~ c
8⇡a2

(2c1 ma+ c2) e
�ma, tr�1U 6= 0

E(a) = � ~ c
8⇡a2

(2 b1 ma+ b2) e
�2ma, tr�1U = 0
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Congratulations
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Gribov’s Quark Confinement

Heavy quark potential:

SYM
E (A) = −

1

2g2
s

∫

d4x Tr(F μνFμν) + Q

∫

dx0 A3
0

Solution of motion equations (Coulomb)

(A0)3(−→x ) = i
g2

s Q

4π|−→x |
= i
α

|−→x |
, α =

g2
s Q

4π
,

Instability of Euclidean functional integral

δ(2)S = −
∫

d4x Tr
(

τμ(−δμνD2
+ DμDν − 2[Fμν.·])τν

)

,

Quark-Antiquark: Meson

Coulomb potential

(A0)3(⃗x) =
iα

|⃗x − L⃗e3|
−

iα

|⃗x + L⃗e3|
,
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Quark-Antiquark: Meson

Coulomb potential

(A0)3(⃗x) =
iα

|⃗x − L⃗e3|
−

iα

|⃗x + L⃗e3|
,

Unstable magnetic modes

τ⃗(⃗x) =
x⃗ × e⃗3

ρ
φ(ρ, z) T12, τ0 = 0 (m = 1),

[ ∂2

∂ρ2
+

∂2

∂z2
−

3

4ρ2
+

(

α
√

ρ2 + (z − L)2
−

α
√

ρ2 + (z + L)2

)2
]

φ(ρ, z)

= λ2φ(ρ, z)
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Quark-Antiquark Coulomb Instability

• Zero modes with j = 0 (pure gauge modes)

• Three different unstable regimes j = 1
Α

2

2

9

4

• i) α2 < 2 ⇒ no negative eigenvalues
(Stability of Coulomb potential)

• ii) 2 < α2 < 9
4⇒ two negative eigenvalues at

large distances and none at short distances.
(Instability of Coulomb potential)

• iii) α2 > 9
4⇒ ∞-negative eigenvalues

(Instability of Coulomb potential)

Broken Conformal Symmetry Λ
M.A. & A. Santagata (2012)
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Unstable solutions

2 < α2 <
9

4

Symmetric solution (Thick string)
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COULOMB PHASE INSTABILITIES

• Gribov picture of confinement derived from first
principles

• Weak Coupling regime α2 < 2:
Coulomb phase is stable (perturbative regime)

• Strong Coupling regime α2 > 9
4 :

Coulomb phase is unstable (confinement)

• Intermediate regime 2 < α2 < 9
4 :

there is a critical quark distance Lc

L<Lc Coulomb phase stable (asymt. freedom)

L>Lc Coulomb phase unstable (confinement)
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vacuum fluctuation

Congratulations
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