Quantum Vacuum Fluctuations

M. Asorey

Centro de Astropartículas y Física de Altas Energías

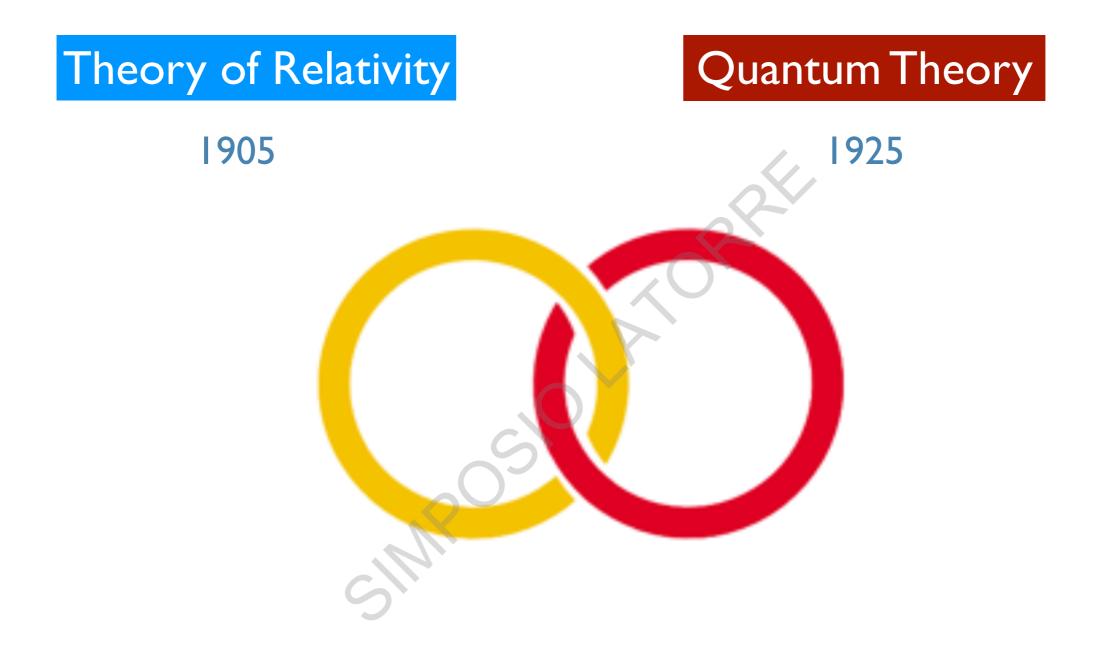
......

1542

Departamento de Física Teórica Universidad Zaragoza

Latorrefest 60

A vacuum fluctuation



Vacuum fluctuations

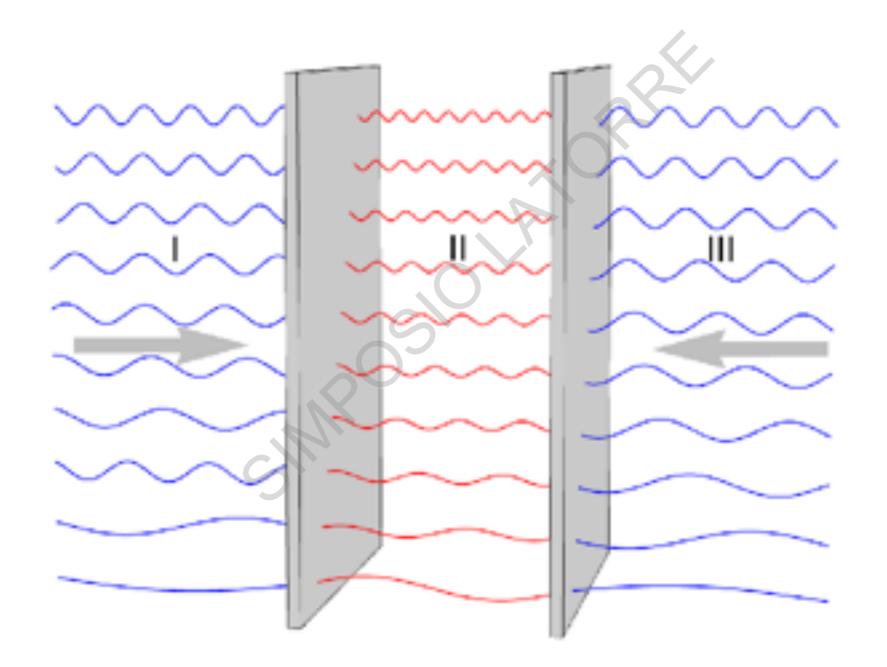
• are real

do matter

do weight

cosmological puzzle

Casimir effect



Mathematics. — On the attraction between two perfectly conducting plates. By H. B. G. CASIMIR.

(Communicated at the meeting of May 29, 1948.)

The higher derivatives will contain powers of (a/aka). Thus we find

$$\partial E |L^2 = -\hbar c \frac{\pi^2}{24 \times 30} \frac{1}{a^3}$$

a formula which holds as long as $ak_n >> 1$. For the force per cm² we find

$$F = h c \frac{\pi^2}{240} \frac{1}{a^4} = 0.013 \frac{1}{a^4} \text{ dyne/cm}^2$$

where a, is the distance measured in microns.

We are thus led to the following conclusions. There exists an attractive force between two metal plates which is independent of the material of the plates as long as the distance is so large that for wave lengths comparable with that distance the penetration depth is small compared with the distance. This force may be interpreted as a zero point pressure of electromagnetic waves.

Although the effect is small, an experimental confirmation seems not unfeasable and might be of a certain interest.

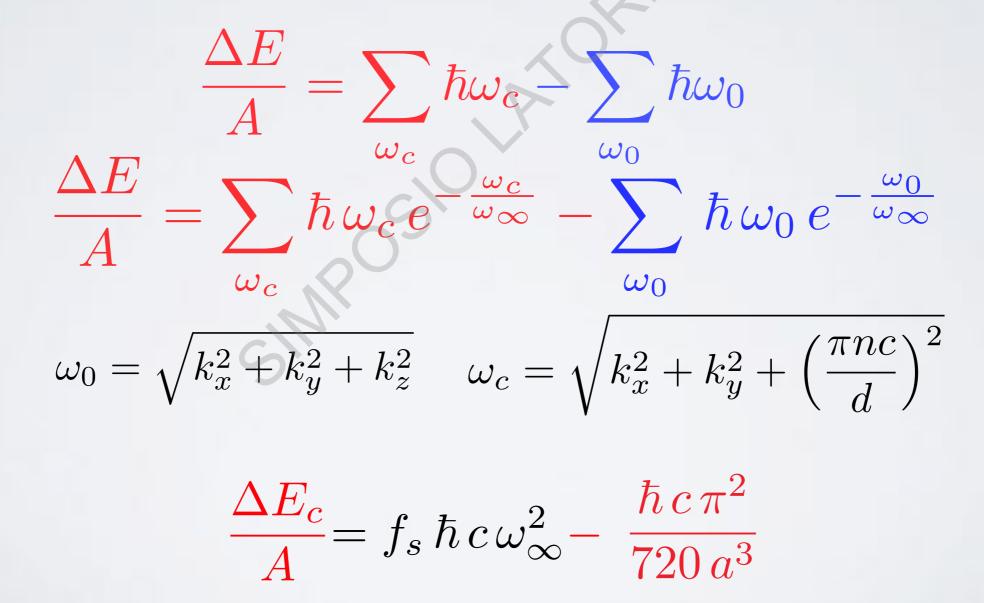
> Natuurkundig Laboratorium der N.V. Philips' Gloeilampenfabrieken. Eindhoven.)

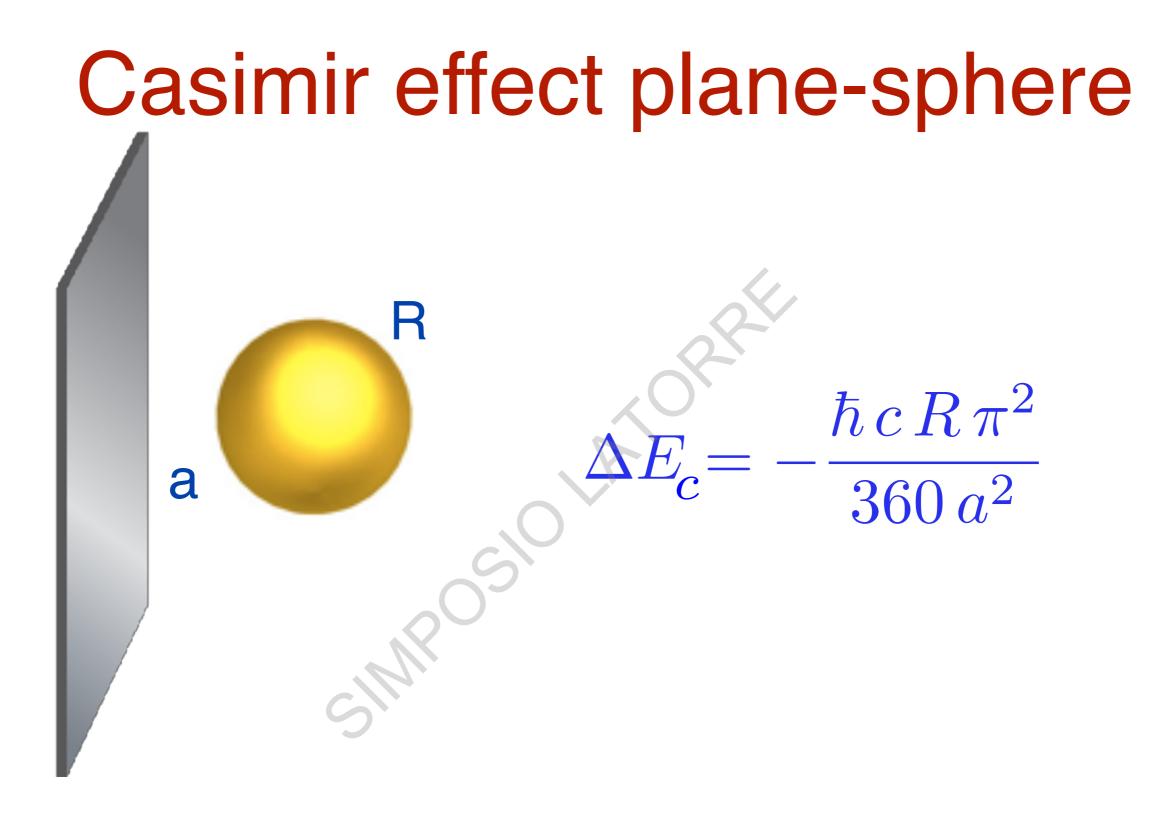
$F = h c \frac{\pi^2}{240} \frac{1}{a^4} = 0.013 \frac{1}{a^4_{\mu}} \, dyne/cm^2$

- The formula only depends on h, c and a
- The minus sign means that F it is attractive
- The force is the dominant force between neutral objects a submicron distances
- At a=10nm the Casimir force equals the atmospheric pressure

Origin of Casimir force

 Modification of vacuum (zero-point) energy due to the presence of the plates





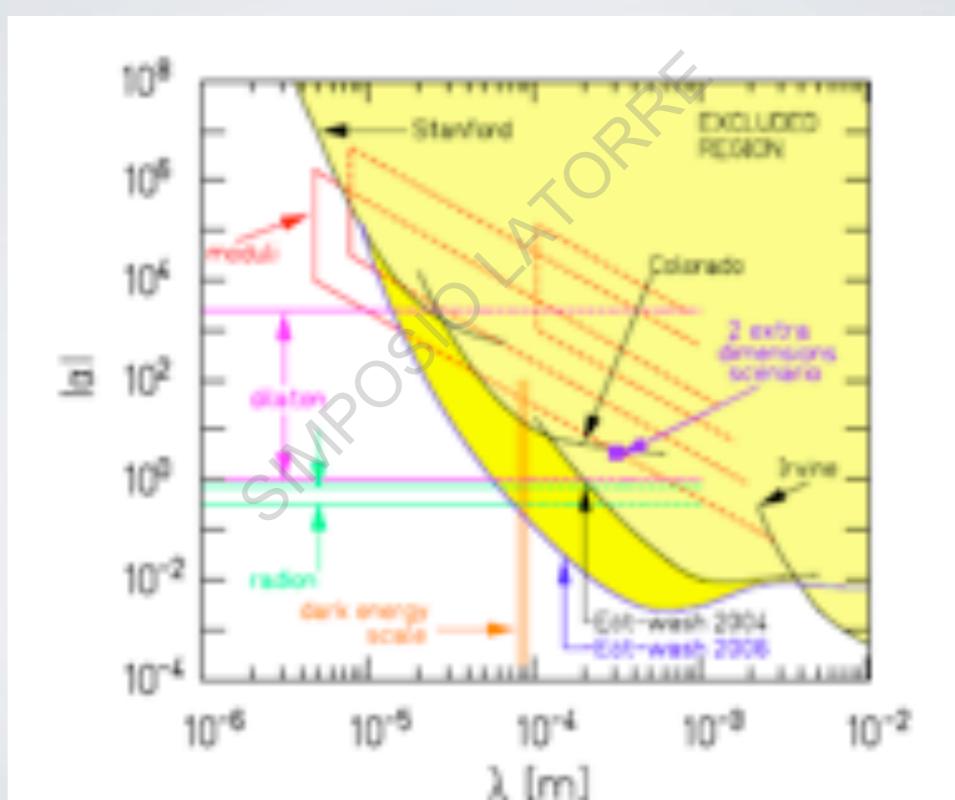
Casimir effect experiments

X

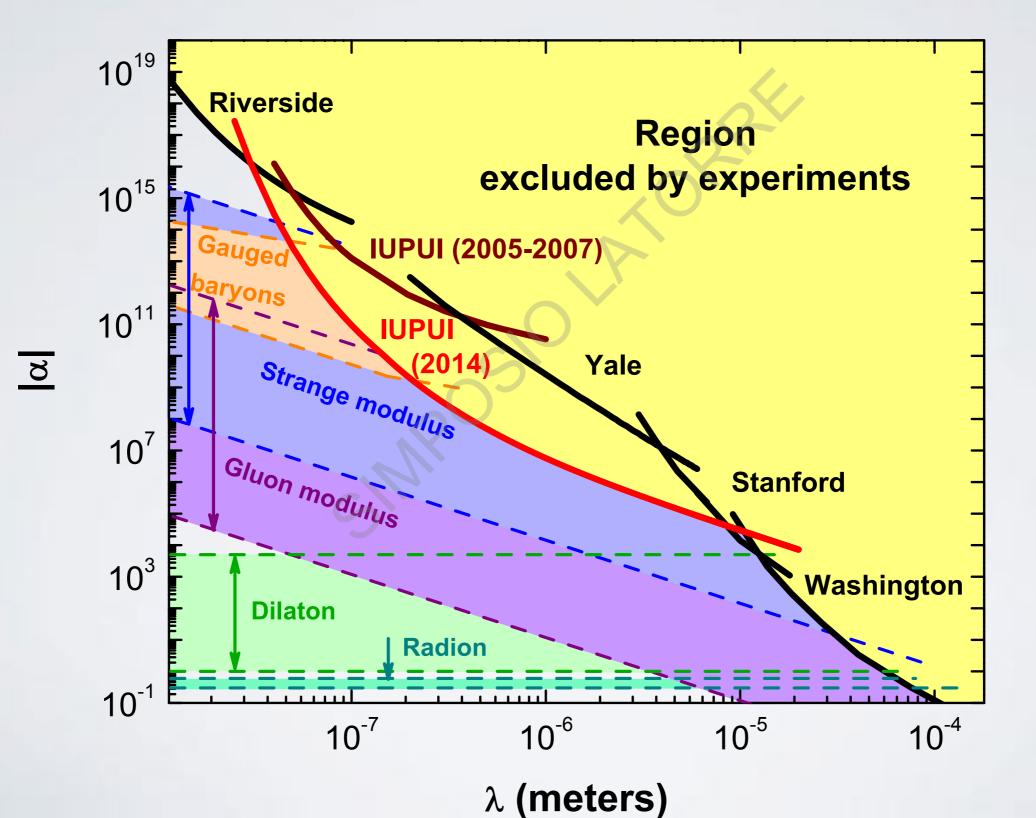
Year	Geometry	Range (μ m)	Accuracy (%)	Reference
1958	Plane-plane	$0.3 \div 2.5$	100	Sparnaay 1958
1978	Plane-sphere	$0.13 \div 0.67$	25	van Blokland and Oveerbeek 1978
1997	Plane-sphere	$0.6 \div 12.3$	5	Lamoreaux 1997
1998	Plane-sphere	$0.1 \div 0.9$	21	Mohideen and Roy 1998
2000	Crossed cylinders	$0.02 \div 0.1$	1	Ederth 2000
2001	Plane-sphere	$0.08 \div 1.0$	1	Chan et al 2001
2002	Plane-plane	$0.5 \div 3.0$	15	Bressi et al 2002
2003	Plane-sphere	$0.2 \div 2.0$	1	Decca et al 2003
2018	Sphere-sphere	0.02 - 0.4	1	Munday <i>et al.</i> 2018

Gravity at short distances

 $V(r) = -G\frac{m_1 m_2}{r} (1 + \alpha e^{-r/\lambda})$



Experimental bounds 2 orders of magnitude improvement (2014)



The weight of quantum vacuum

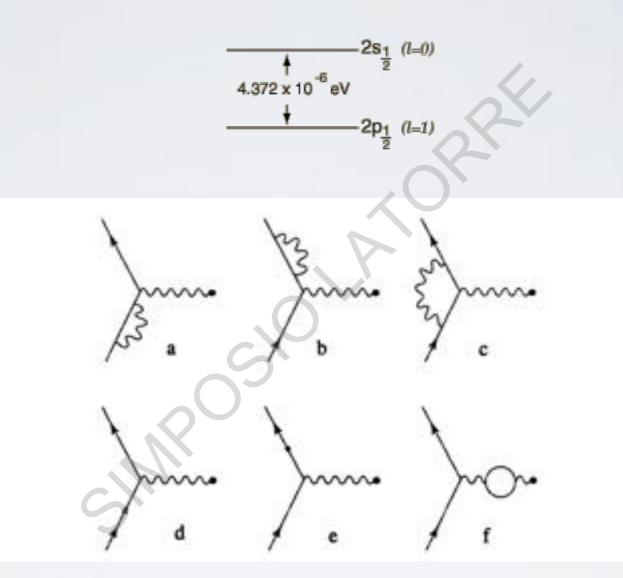
$$g_{00} = 1 - g z, \quad g_{ij} = -\delta_{ij}$$
$$\frac{\Delta E_c}{A} = -\frac{\hbar c \pi^2}{720 a^3} \left(1 + \frac{5}{2} \frac{g a}{c^2}\right)$$
$$\Delta P_c^{\pm} = -\frac{\hbar c \pi^2}{240 a^4} \left(1 \pm \frac{2}{3} \frac{g a}{c^2}\right)$$

Equivalence principle

$$F_g = -g \, \frac{E_c}{c^2}$$

Lamb shift

1947



Experiment

Theory

 1057.862 ± 0.020 MHz .

1057.864±0.014 MHz

Weight of fluctuations. Equivalence principle

Vacuum Energy vs Dark Energy

Cosmological constant (w=-1)

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda_0)$$
$$\frac{E_0}{V} = \frac{1}{8\pi G} \Lambda_0 = -\frac{P_0}{V}$$

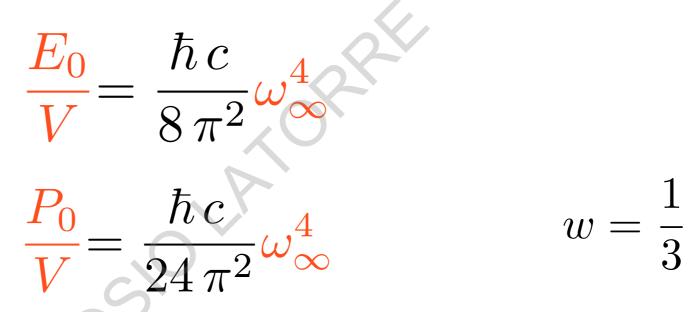
 Cosmological constant is much smaller than any QFT vacuum energy

 $\frac{E_0}{V}^{\rm obs} \sim (10^{-12} \,{\rm GeV})^4$

 $\frac{E_0}{V}^{(\text{EW})} \sim (100 \,\text{GeV})^4 \qquad \frac{E_0}{V}^{(\text{PL})} \sim (10^{18} \,\text{GeV})^4$

Vacuum Energy vs Dark Energy

Minkowski spacetime



Cosmological background FLRW

$$\frac{E_0}{V} = \frac{\hbar c}{8\pi^2} \omega_\infty^4 + \frac{H^2(t)}{8\pi^2} \omega_\infty^2 + \mathcal{O}(H^4 \log \omega_\infty)$$
$$\frac{P_0}{V} = \frac{\hbar c}{24\pi^2} \omega_\infty^4 - \frac{H^2(t)}{24\pi^2} \omega_\infty^2 + \mathcal{O}(H^4 \log \omega_\infty)$$

Casimir Energy vs Dark Energy

• Casimir Energy density

 $\mathcal{E}_{c} = \frac{E_{c}}{A} = -\frac{\hbar c \pi^{2}}{720 a^{3}}$ • Casimir Pressure $P_{c} = -\frac{\hbar c \pi^{2}}{240 a^{4}}$

Amazing equation of state

$$\mathcal{E}_c = \frac{1}{3} P_c$$

The weight of quantum vacuum

$$\langle T_{\mu\nu} \rangle = -\frac{\hbar c \pi^2}{720 a^4} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}$$
Conformal Invariance
$$\langle T_{\mu\nu} \rangle \neq -\frac{\hbar c \pi^2}{\lambda a^4} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

There is life beyond QED

Non Abelian gauge theories

Perturbation theory

D = 3 + 1

$$\frac{E_c}{A} = -\frac{\hbar c \, \pi^2}{720 \, a^2} (N^2 - 1)$$

D

$$= 2 + 1 \qquad \frac{E_c}{A} = -\frac{\hbar c \zeta(3)}{8 \pi a^2} (N^2 - 1)$$

Non Abelian gauge theories

Non-perturbative

$$\hat{H} = \int d^3x \,\left[-\frac{g^2}{2} \frac{\delta^2}{\delta A^2} + \frac{1}{2g^2} F_{ij} F^{ij} \right]$$

Gauss law

$$\nabla_A \cdot \frac{\delta}{\delta A} \psi(A) = 0 \qquad \psi(A^{\Phi}) = \psi(A)$$

In 2+ID: holomophic parametrization

 $A_z = \partial_z M M^{-1}$

Non Abelian gauge theories Gauge transformations $A^{\chi} = \chi^{-1}A\chi + \chi^{-1}d\chi \qquad M^{\chi} = \chi M$ Gauge invariant observables $H = M^{\dagger}M = e^{\tau^{a}\varphi_{a}}$ $\hat{H} = \frac{1}{2} \int d^3x \left[-\frac{\delta^2}{\delta\phi^2} + \phi(-\Delta + m^2)\phi \right] + \cdots$ $\phi^{a} = g \sqrt{\Delta} \varphi^{a} \qquad m = \frac{g^{2}}{2\pi} c_{A} \qquad \sigma_{R} = \frac{m^{2} \pi c_{R}}{2 c_{A}}$ [Karabali-Nair]

Casimir Energy

Dirichlet/Neumann boundary conditions

$$\mathcal{E}(a) = -\frac{1}{8\pi a^2} (2\,m\,a+1)\,e^{-2\,m\,a}$$

In agreement with lattice results

Periodic boundary conditions

$$\mathcal{E}(a) = -\frac{1}{\pi a^2} (2\,m\,a+1)\,e^{-\,m\,a}$$

[M.A.-C. luliano]

Casimir Energy

Zaremba boundary conditions

$$\mathcal{E}(a) = -\frac{\hbar c}{8\pi a^2} (2\,m\,a+1)\,e^{-2\,m\,a}$$

Generic boundary conditions

$$\begin{pmatrix} \phi(0) + i\dot{\phi}(0) \\ \phi(a) + i\dot{\phi}(a) \end{pmatrix} = U \begin{pmatrix} \phi(0) - i\dot{\phi}(0) \\ \phi(a) - i\dot{\phi}(a) \end{pmatrix}$$

$$\mathcal{E}(a) = -\frac{\hbar c}{8\pi a^2} (2c_1 \, m \, a + c_2) \, e^{-m \, a}, \qquad \operatorname{tr} \sigma_1 U \neq 0$$

$$\mathcal{E}(a) = -\frac{hc}{8\pi a^2} (2b_1 m a + b_2) e^{-2ma}, \qquad \operatorname{tr} \sigma_1 U = 0$$

[M.A.-C. luliano]

Congratulations

There is life beyond 60

Gribov's Quark Confinement

Heavy quark potential:

$$S_E^{YM}(A) = -\frac{1}{2g_s^2} \int d^4x \, Tr(F^{\mu\nu}F_{\mu\nu}) + Q \int dx^0 A_0^3$$

Solution of motion equations (Coulomb)

$$(A_0)^3(\vec{x}) = rac{ilpha}{|\vec{x} - L\vec{e}_3|} - rac{ilpha}{|\vec{x} + L\vec{e}_3|}, \quad \alpha = rac{g_s^2 Q}{4\pi},$$

Instability of Euclidean functional integral

$$\delta^{(2)}S = -\int d^4x \, Tr \left(\tau^{\mu}(-\delta_{\mu\nu}D^2 + D_{\mu}D_{\nu} - 2[F_{\mu\nu}.\cdot])\tau^{\nu}\right)$$

Quark-Antiquark: Meson

Coulomb potential

$$(A_0)^3(\vec{x}) = \frac{i\alpha}{|\vec{x} - L\vec{e}_3|} - \frac{i\alpha}{|\vec{x} + L\vec{e}_3|},$$

Unstable magnetic modes

$$ec{ au}(ec{x}) = rac{ec{x} imes ec{ extbf{e}_3}}{
ho} \phi(
ho, z) \, \mathsf{T}_{12}, \quad au_0 = 0 \quad (m = 1),$$

$$\Big[\frac{\partial^2}{\partial\rho^2} + \frac{\partial^2}{\partial z^2} - \frac{3}{4\rho^2} + \left(\frac{\alpha}{\sqrt{\rho^2 + (z-L)^2}} - \frac{\alpha}{\sqrt{\rho^2 + (z+L)^2}}\right)^2\Big]\phi(\rho,z)$$

 $=\lambda^2\phi(
ho,z)$

Quark-Antiquark Coulomb Instability

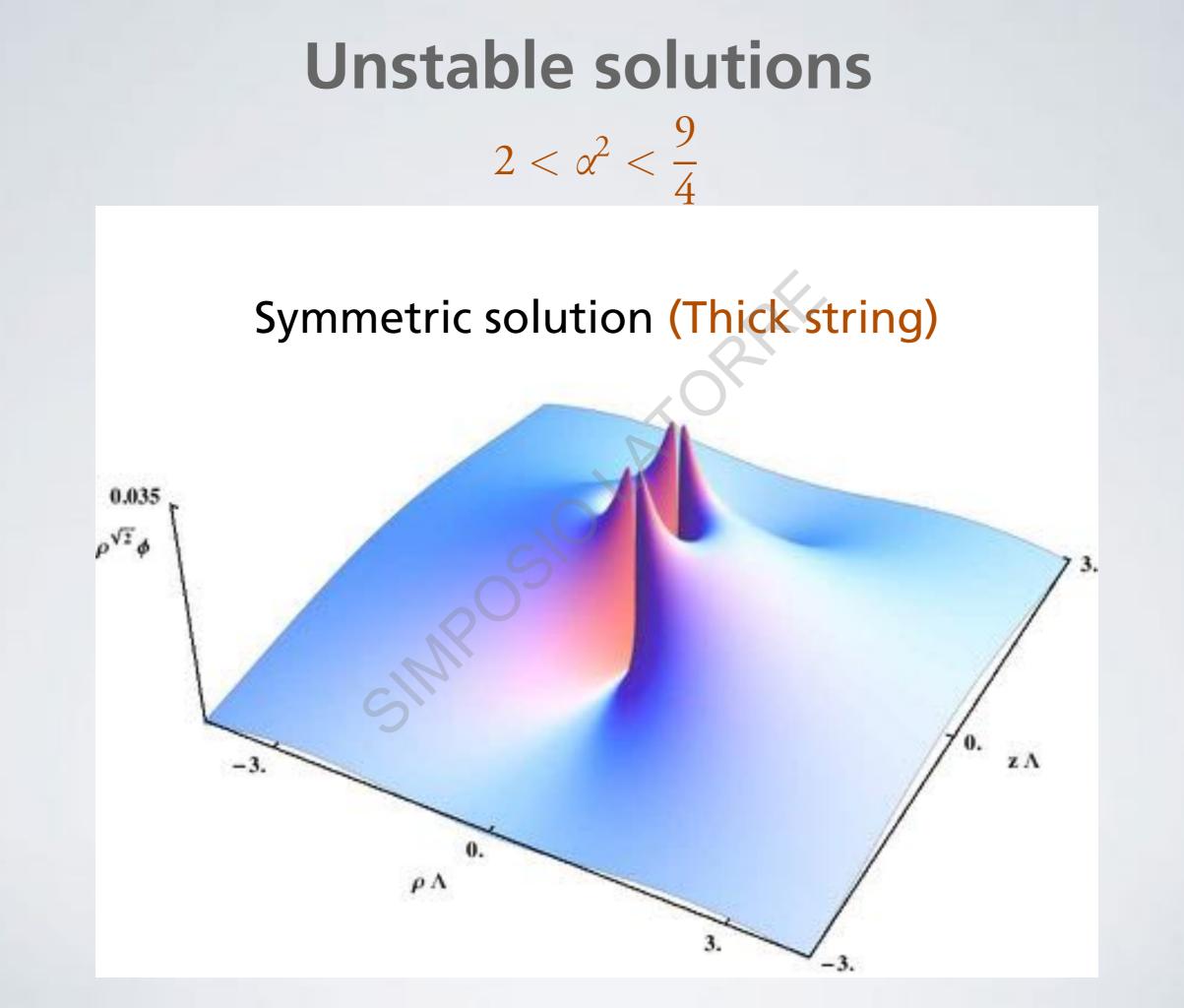
• Zero modes with j = 0 (pure gauge modes)

- Three different unstable regimes j = 1
 - i) α² < 2 ⇒ no negative eigenvalues
 (Stability of Coulomb potential)
 - ii) 2 < x² < ⁹/₄ ⇒ two negative eigenvalues at⁻¹
 large distances and none at short distances.
 (Instability of Coulomb potential)

 α^2

• iii) $\alpha^2 > \frac{9}{4} \Rightarrow \infty$ -negative eigenvalues (Instability of Coulomb potential)

> Broken Conformal Symmetry A M.A. & A. Santagata



COULOMB PHASE INSTABILITIES

- Gribov picture of confinement derived from first principles
- Weak Coupling regime $\alpha^2 < 2$: Coulomb phase is stable (perturbative regime)
- Strong Coupling regime $\alpha^2 > \frac{9}{4}$: Coulomb phase is unstable (confinement)
- Intermediate regime $2 < \alpha^2 < \frac{9}{4}$: there is a critical quark distance L_c

L<L_c Coulomb phase stable (asymt. freedom) L>L_c Coulomb phase unstable (confinement)

vacuum fluctuation

Congratulations